A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach

نویسنده

  • T. Zhu
چکیده

The Galerkin ®nite element method (GFEM) owes its popularity to the local nature of nodal basis functions, i.e., the nodal basis function, when viewed globally, is non-zero only over a patch of elements connecting the node in question to its immediately neighboring nodes. The boundary element method (BEM), on the other hand, reduces the dimensionality of the problem by one, through involving the trial functions and their derivatives, only in the integrals over the global boundary of the domain; whereas, the GFEM involves the integration of the ``energy'' corresponding to the trial function over a patch of elements immediately surrounding the node. The GFEM leads to banded, sparse and symmetric matrices; the BEM based on the global boundary integral equation (GBIE) leads to full and unsymmetrical matrices. Because of the seemingly insurmountable dif®culties associated with the automatic generation of element-meshes in GFEM, especially for 3-D problems, there has been a considerable interest in element free Galerkin methods (EFGM) in recent literature. However, the EFGMs still involve domain integrals over shadow elements and lead to dif®culties in enforcing essential boundary conditions and in treating nonlinear problems. The object of the present paper is to present a new method that combines the advantageous features of all the three methods: GFEM, BEM and EFGM. It is a meshless method. It involves only boundary integration, however, over a local boundary centered at the node in question; it poses no dif®culties in satisfying essential boundary conditions; it leads to banded and sparse system matrices; it uses the moving least squares (MLS) approximations. The method is based on a Local Boundary Integral Equation (LBIE) approach, which is quite general and easily applicable to nonlinear problems, and non-homogeneous domains. The concept of a ``companion solution'' is introduced so that the LBIE for the value of trial solution at the source point, inside the domain X of the given problem, involves only the trial function in the integral over the local boundary oXs of a sub-domain Xs centered at the node in question. This is in contrast to the traditional GBIE which involves the trial function as well as its gradient over the global boundary C of X. For source points that lie on C, the integrals over oXs involve, on the other hand, both the trial function and its gradient. It is shown that the satisfaction of the essential as well as natural boundary conditions is quite simple and algorithmically very ef®cient in the present LBIE approach. In the example problems dealing with Laplace and Poisson's equations, high rates of convergence for the Sobolev norms jj jj0 and jj jj1 have been found. In essence, the present EF-LBIE (Element Free-Local Boundary Integral Equation) approach is found to be a simple, ef®cient, and attractive alternative to the EFG methods that have been extensively popularized in recent literature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Boundary Meshless Method for Neumann Problem

Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is describe...

متن کامل

A critical assessment of the truly Meshless Local Petrov-Galerkin (MLPG), and Local Boundary Integral Equation (LBIE) methods

The essential features of the Meshless Local Petrov-Galerkin (MLPG) method, and of the Local Boundary Integral Equation (LBIE) method, are critically examined from the points of view of a non-element interpolation of the ®eld variables, and of the meshless numerical integration of the weak form to generate the stiffness matrix. As truly meshless methods, the MLPG and the LBIE methods hold a gre...

متن کامل

A Pure Contour Formulation for the Meshless Local Boundary Integral Equation Method in Thermoelasticity

A new meshless method for solving stationary thermoelastic boundary value problems is proposed in the present paper. The moving least square (MLS) method is used for the approximation of physical quantities in the local boundary integral equations (LBIE). In stationary thermoelasticity, the temperature and displacement fields are uncoupled. In the first step, the temperature field, described by...

متن کامل

Local weak form meshless techniques based on the radial point interpolation (RPI) method and local boundary integral equation (LBIE) method to evaluate European and American options

For the first time in mathematical finance field, we propose the local weak form meshless methods for option pricing; especially in this paper we select and analysis two schemes of them named local boundary integral equation method (LBIE) based on moving least squares approximation (MLS) and local radial point interpolation (LRPI) based on Wu’s compactly supported radial basis functions (WCS-RB...

متن کامل

A New and Simple Meshless LBIE-RBF Numerical Scheme in Linear Elasticity

A new meshless Local Boundary Integral Equation (LBIE) method for solving two-dimensional elastostatic problems is proposed. Randomly distributed points without any connectivity requirement cover the analyzed domain and Local Radial Basis Functions (LRBFs) are employed for the meshless interpolation of displacements. For each point a circular support domain is centered and a local integral repr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998